Automated target segmentation and real space fast alignment methods for high-throughput classification and averaging of crowded cryo-electron subtomograms

نویسندگان

  • Min Xu
  • Frank Alber
چکیده

MOTIVATION Cryo-electron tomography allows the imaging of macromolecular complexes in near living conditions. To enhance the nominal resolution of a structure it is necessary to align and average individual subtomograms each containing identical complexes. However, if the sample of complexes is heterogeneous, it is necessary to first classify subtomograms into groups of identical complexes. This task becomes challenging when tomograms contain mixtures of unknown complexes extracted from a crowded environment. Two main challenges must be overcomed: First, classification of subtomograms must be performed without knowledge of template structures. However, most alignment methods are too slow to perform reference-free classification of a large number of (e.g. tens of thousands) of subtomograms. Second, subtomograms extracted from crowded cellular environments, contain often fragments of other structures besides the target complex. However, alignment methods generally assume that each subtomogram only contains one complex. Automatic methods are needed to identify the target complexes in a subtomogram even when its shape is unknown. RESULTS In this article, we propose an automatic and systematic method for the isolation and masking of target complexes in subtomograms extracted from crowded environments. Moreover, we also propose a fast alignment method using fast rotational matching in real space. Our experiments show that, compared with our previously proposed fast alignment method in reciprocal space, our new method significantly improves the alignment accuracy for highly distorted and especially crowded subtomograms. Such improvements are important for achieving successful and unbiased high-throughput reference-free structural classification of complexes inside whole-cell tomograms. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.

منابع مشابه

High-throughput subtomogram alignment and classification by Fourier space constrained fast volumetric matching.

Cryo-electron tomography allows the visualization of macromolecular complexes in their cellular environments in close-to-live conditions. The nominal resolution of subtomograms can be significantly increased when individual subtomograms of the same kind are aligned and averaged. A vital step for such a procedure are algorithms that speedup subtomogram alignment and improve its accuracy to allow...

متن کامل

TomoMiner and TomoMinerCloud: A Software Platform for Large-Scale Subtomogram Structural Analysis.

Cryo-electron tomography (cryo-ET) captures the 3D electron density distribution of macromolecular complexes in close to native state. With the rapid advance of cryo-ET acquisition technologies, it is possible to generate large numbers (>100,000) of subtomograms, each containing a macromolecular complex. Often, these subtomograms represent a heterogeneous sample due to variations in the structu...

متن کامل

An integration of fast alignment and maximum-likelihood methods for electron subtomogram averaging and classification

Motivation: Cellular Electron CryoTomography (CECT) is an emerging 3D imaging technique that visualizes subcellular organization of single cells at sub-molecular resolution and in near-native state. CECT captures large numbers of macromolecular complexes of highly diverse structures and abundances. However, the structural complexity and imaging limits complicate the systematic de novo structura...

متن کامل

Methods for aligning and for averaging 3D volumes with missing data.

The visibility and resolution of a tomographic reconstruction containing multiple copies of discrete particles can be enhanced by averaging subtomograms after they are corrected aligned. However, the "missing wedge" in electron tomography can easily lead to erroneous alignment. We have explored a Fourier space cross-correlation method with a proper weighting scheme to align and average differen...

متن کامل

Deep learning based supervised semantic segmentation of Electron Cryo-Subtomograms

Cellular Electron Cryo-Tomography (CECT) is a powerful imaging technique for the 3D visualization of cellular structure and organization at submolecular resolution. It enables analyzing the native structures of macromolecular complexes and their spatial organization inside single cells. However, due to the high degree of structural complexity and practical imaging limitations, systematic macrom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2013